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Abstract - We consider the problem of identifying the spatially varying flexural rigidity of a plate using
an observed deflection solution of the direct problem of a dynamic linear Kirchhoff plate model. For this
inverse problem, several uniqueness and continuous dependence results are developed.

1. INTRODUCTION
Many rocket propulsion laboratory structures are designed to serve as a test bed for the implementation
and evaluation of control algorithms for the large angle slewing of spacecraft with flexible appendages.
Furthermore, these structures are specifically designed to exhibit structural modes and damping char-
acteristics representative of realistic large flexible space structures, [1]. The difficulties involved in the
design of practical and efficient control laws for large spacecraft (e.g. the inherent infinite dimensionality
of the system, a large number of closely spaced modal frequencies, high flexibility, a fuel-limited, hostile,
highly variable environment, etc.) have stimulated research into the development of system identification
and parameter estimation procedures which will yield high fidelity models. A particular area of interest
involves schemes for the estimation of material parameters describing, for example, mass, inertia, and
flexural rigidity or damping properties in distributed models for the vibration of viscoelastic systems-
specifically, mechanical beams, plates and the like. The determination of the elastic properties of a
deformable (or bending) material is one of the central problems in computational material diagnostics,
[9].
The partial differential equation ,
0%y

moa + V%(aV?u) = f (1)

has been considered at the steady-state in [12, 24] as a dynamic linear Kirchhoff plate model which takes
into account moments parallel to the x— and y—axes with no twisting. If a is a spacewise, piecewise
constant function it represents the transient Kirchhoff equation for composite, isotropic, homogeneous
plates in linear elasticity, [14]. The quantity u represents the deflection of the elastic plate, f is the load
to which the plate is subjected, and a and m represent the flexural rigidity and the mass density per
unit area of the plate, respectively. The flexural rigidity depends on the material properties of the plate,
namely, Young’s modulus and Poisson ratio, as well as the thickness of the plate, [22].

In practice it is sometime impossible to obtain a precise knowledge of the physical parameters a and
m of the elastic system by experimental methods, whereas it is usually easier to take measurements of the
deflection u and the load f. From such considerations arise the well known inverse problem of ‘parameter
identification’, i.e. evaluating the physical parameter values by function solution measurements. Such
a problem is ill-posed, since a solution, whenever it exists, need not be unique and generally does not
depend continuously on the data.

One-dimensional coefficient identification problems in beam systems for constant coefficients m and
a can be found in [1,25], whilst spacewise dependencies of @ when m = 1 can be found in [13]. More
general variations of a and/or m with respect to z, ¢t and/or u have been considered in [16]. Further,
two-dimensional anisotropic plates with unknown constant material characteristics have been considered
in [6].

A common identification strategy is the ”indirect” approach in which one minimizes, via an iterative
least-squares process, the gap between a computed forward solution u, ,, and the observed values. Nev-
ertheless, the indirect approach is very powerful, especially for its simple computational implementation
which can also allow for the practical case of pointwise measurements to be taken into account, as sug-
gested in Section 5. However, when it comes to establishing theoretical uniqueness and stability estimates
in the continuous case, as proposed in this study for the steady-state, an alternative ”direct” approach
involving an approximate solution of the second-order partial differential equation which involves the
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function a, namely,
V2(aV?u) = aVu + 2Va - V(VZ) 4 (V2a)(Viu) = f inQ C R (2)

seems more feasible. Essentially the same equation for a also arises in the transient situation when one
has a time history of u and f measurements, or if m is known a priori, which is sometimes assumed.
A practical limitation to the direct approach for identifying a is that the coefficients in eqn.(2) involve
derivatives of the measured quantity u. However, when it is feasible, then it is potentially simpler and
less costly than using the indirect approach.

One-dimensional beam-type system coefficient identification problems for eqn.(2) can be found in {15].
Here we consider a higher-dimensional situation, which is based on a new extension of the work of Richter
[20] for diffusive-like systems, using a systematic analysis of the inverse problem (2) in which the flexural
rigidity coefficient a is to be identified on the basis of an observed pair f, u. A more realistic mathe-
matical model based on the Love-Kirchhoff plate theory has been considered in [10] where the material
properties forming the elastic plate have been identified from the complete knowledge of the Dirichlet to
Neumann map.

In section 2 we establish the continuous dependence of the forward (direct) problem in which a and f
are known and u, subject to appropriate boundary conditions, needs to be found. The difficulties arising
with the inverse problem in which v and f are known and a has to be identified are shown in section 3
for the one-dimensional beam situation. The research core of the paper then establishes the uniqueness
of a and its continuous dependence on the input data f, the boundary conditions, V2u, V3u and V4u.
In practice this would require differentiating twice the bending moment or four times the deflection, both
noisy functions, hence resembling the problem considered in [3] to recovering engineering loads from strain
gauge data. A particular case concerned with the retrieval of a harmonic flexural rigidity is investigated
in section 4. Finally, section 5 presents the conclusions of this research and an integral formulation which
can be used for obtaining the numerical solution.

2. WELL-POSEDNESS OF THE FORWARD PROBLEM
Consider first the direct problem given by the fourth-order partial differential equation

L(a;u) := V(a(z)V3u(z)) = f(z), z€Q (3)

where a and v are defined in a connected, bounded domain Q € R?. We denote by n the outward normal
to the boundary 89 and we find it convenient to use the function spaces L2(2) and {L°°(Q2)}", whose
norms are given by

1/2 n
I fllz2) = </Q f2($)dfb“> v gz = D supzea | fi@) |- (4)
=1

Henceforth we abbreviate these norms by ||.||2 and ||.||co, respectively.

We adopt the view that a good approximation to the flexural rigidity coefficient a is one which yields
a good deflection solution u to the forward problem. More specifically, let v and v be two solutions of (3)
which correspond to different coefficients a and b. Viewing problem (3) in its usual weak form variational
setting, i.e. u, v € H?(), a, b € L>°(Q), we ask how close must a and b be in order to guarantee that
V2(u — v)||2 is small. The following lemma addresses this question.

Lemma 2.1. If L{a;u) = L(b;v) in Q and

_ Ou  Ov 2. o2
u=v and (871_671 or aVu_bV'u>, on 02 (5)
or,
0 2y O 5 Ou  Ov 2 oo
an(aVu)man(va) and (871“—8; or aVu=>bV< ), onof} (6)
then, if we assume b > 0, we have
a—>b
V20— o)l < 12~ om gy, ™

~ infab
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Proof. First we rewrite L(a;u) = L(b;v) as L(a — bju) = L(b;v — u). Multiplying this equation by
(v — u), integrating using Green’s formulae and imposing the boundary conditions (5) or (6), we obtain

/ (a —b)V*uV3(v — u)dQ = / b| V(v —wu) |*dQ (8)
Q Q
Applying the Cauchy-Schwarz inequality yields

lla = ool V2ull2 2 [V?(u = v)|l2 infab (9)
as required, see eqn.(7).

Remark 2.1. The imposition of the boundary conditions (5) and (6) corresponds to physical situa-
tions which include fixed, supported and free plates.

Based on Lemma 2.1, we take L as the function space setting for the flexural rigidity coefficient.
Furthermore, physical conditions require a > 0.
We further consider, for simplicity, only the boundary conditions

u(z) = hiz), x€0Q (10)
M(z) =g(z), z€dQ (11)

where —
M(z) = a(z)Vu(z), z€Q (12)

is the bending moment of the plate and g and h are given functions of z on 0f2. When ¢ = h =0
on 89 the boundary conditions (10) and (11) correspond to supported plates. More general, boundary

conditions instead of (11), of the type
oM
alx)M(x) + %(m) =g1(z), zely (13)
M(z) = ga(z), z €Ty (14)

where o > 0, 'y UTy = 0Q, T'1 NIy =@, I’y # 0, can also be considered.
From equs (3) and (12) we observe that M satisfies the Poisson equation in 2, namely,

V2M(z) = f(z), z€Q (15)

which should be solved subject to the boundary condition (11).

In what follows, we assume that Q is a connected, bounded domain with a sufficiently smooth bound-
ary, e.g. satisfying the interior and/or exterior sphere condition, such as 00 € C2. From the theory
of Poisson’s equation we have the following theorem.

Theorem 2.1. Let f > 0 be a bounded, locally Holder continuous function in Q) and g < 0 be a
continuous function on 0S). Then the Poisson egn.(15) subject to the Dirichlet boundary conditions (11 )
is uniquely solvable in C?(Q) N C(Q), and the following global estimate holds:

[Mloo < llgllzooa0) + Cll flloo (16)

where C' is a positive constant depending only on the diameter of ). In particular, if Q lies between two
parallel planes which are a distance | apart then we can choose C = e' — 1.
Furthermore, the following pointwise estimate holds:

0> M(z) > Aw(z), z€Q (17)

where
A = max {[| flloo, lgll o= o0 } (18)
and w is the unique solution of the problem
Viw(z) =1, z€Q
w(z) = -1, =z €. (19)
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Moreover, if f and g are not simultaneously zero then M < 0 in Q.
In the case where §) is a ball B = Br(0) say, we have the explicit formula for the solution:

M(z) = — /6 K(.9)o0)d5, - /B G(z,9)f(4)d, ©€ B (20)

where K is the Poisson kernel given by

K(ry):M z€B, ye 0B (21)
’ dwdex_y|d7 ? ks

wq s the volume of the unit ball in R, and G(z,y) is the Green function

Gz, y) = —T(z-y)+T (Y 1z-Eyl), v#0 )
’ (|2 )+ T(R), =0

where I' is the normalized fundamental solution of Laplace’s equation:
(23)

S S _ 2—d d> )
N — — d(2—d)wq |QT yl ’
G-y ={ Tgm =l 0=

Proof. From [4, pp.35,55] it is well-known that the problem given by eqns (11) and (15) is uniquely
solvable in C%(Q)NC(£) and that the global estimate (16) and the representation formula (20) hold. We
now prove the pointwise estimates (17). On using Green’s identities the solution M has the representation

M) = - [ G, - [ Qg<y>%<y,x)dsy, zeQ (24)

where G is the Green’s function for the Laplace equation with Dirichlet homogeneous boundary conditions
on 8. Using maximum principles it can be shown, {19, p.85], that the Green’s function G has the
properties

G>0 inQ, Z—i<0 on 0%2. (25)

Since f > 0 and g < 0 then it follows from eqn.(24) that A < 0. To obtain the lower bound for M from
eqns (18) and (19), we remark that the function z(x) = Aw(z) satisfies the inequalities

Viz>f inQ
z<g ondQ. (26)

Defining v = z — M, we have that v satisfies the same inequalities as in eqns (26) and, on reasoning the
same way as before, we find v(x) < 0 for z € © and hence M(z) > Aw(z) for all z € Q.

Remark 2.2. (i) The existence of a unique solution of the Poisson problem with Dirichlet boundary
conditions can be obtained in the weak sense M € H(Q) if g € HY2(9Q), f € H™YQ), or in the
distribution sense M € HY/2(Q) if g € L?(0Q), f € H3/2(Q), [17, Chapter 2, Section 7.3].

(ii) The uniqueness of a classical negative solution for the mixed problem given by eqns (13)-(15) can be
obtained using the same maximum principles, [19, p.85]. Further, this problem will always admit a weak
or generalized solution, [3, p.209]; however even if the given functions f, g1, g2 are very regular, there
will in general be discontinuities in the first derivatives of the solution M along the interface between I';
and Ty, [23]. Ways to deal with the interface singularities can be found in [7,8].

(ii1) Further well-posed results for the Robin problem given by eqns (13) and (15) when 'y = 9Q, 'y = 0
and f =0 can be found in [11].

3. CONTINUOUS DEPENDENCE OF THE FLEXURAL RIGIDITY
We now address the derivation of conditions under which eqn.(3) is guaranteed to have a unique solution
a, and the characterisation of its dependence on the relevant parameters of the problem.

We first illustrate some essential features of the inverse problem by considering a one-dimensional
example:

(a(z)u"(z))" = f(z), z€QCR. (27)
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This second-order ordinary differential equation can easily be integrated, yielding

a(p)u” (p) + (z — p)(a(z)u” (z))o—y + Fi(z)
u//(z) ’

a(z) = z €} (28)

where p, ¢ €  and . .
P = [ 1@ R = [ e (29)
q V4

If u” is bounded away from zero over 2, and the values of a and (a(z)u”(z))" are given at some points
p and g € €, respectively, then it is obvious that a unique solution, as given by eqn.(28), exists for any
integrable function f. It should be noted that if the shear force (a(z)u’(z))’ is prescribed at one point
g € 0 as a boundary condition, then only a needs to be prescribed at a single point p € Q for the
existence and uniqueness of the solution. On the other hand, if v” vanishes at a single point p € Q, and
if /" is bounded away from zero over €, then only the shear force (a(z)u”(z))’ needs to be specified at
some point ¢ € Q. In this case, the solution (28) at the point p is obtained by applying L’Hopital’s rule

as follows:
(a(z)u"(2))p—q + F(p)
u”’(p) :

Further, if u” and " vanish simultaneously at a single point p € Q and v is bounded away from zero
over {2, then a is well defined in © without any specification on a. In this degenerate case we have

a(p) = f(p)/u"" (v). (31)

1

a(p) = (30)

i

Finally, we observe that if v”, v/ and v vanish simultaneously at a point p € Q (which, for the

homogeneous version of the problem, will occur at any interior point where u” = v/ = 0), we have a
particularly ill-posed situation where a(p) involves derivatives of the function u. Now suppose that u” and

v/ vanish simultaneously at several points p; < ps < ..., then a solution exists only if the compatibility

conditions fpp Hf(e)de = pp_i“ ( / I f (S)df) dz = 0 are satisfied. In the case of the identification problem,

7

where u arises as a response to f, the compatibility conditions are automatically satisfied, except for the
presence of measurement errors.

In what follows, we let the input data (u, f) be given such that v € C*(Q) N C%(Q) and f € L®(Q) is
bounded and locally Holder continuous. As suggested by Theorem 2.1, in what follows we consider the
inverse problem L(a;u) = f for finding o > 0, a € L*°(f2), under the assumption that

supaVu = —k < 0 (32)

which circumvents the source of difficulty of the one-dimensional case.
Using Theorem 2.1 and Remark 2.2, the following identification result for the inverse problem is ob-
tained.

Theorem 3.1. Suppose that f and g are not simultaneously zero with f > 0 bounded and locally
Holder continuous, g < 0 continuous and let eqn.(32) be satisfied. Then the problem L(a;u) = f subject
to (11) has a unique positive solution a € C2(Q) N C(KY), which is explicitly given by

a(z) = V() z € (33)

Furthermore, a satisfies the pointwise estimate

A
a(z) < —Ew(x), zeQ (34)
and the global estimates
A Al+C

lalloo < 2l < 22H) (35)
lalleo < ”g||L°°‘3”’k+ e A(lzc). (36)

Proof. Firstly we note that since f > 0 and g < 0 are not simultaneously identically zero, from
eqn.(24) and Theorem 2.1, then we have M < 0 as the unique solution in C2(Q2) N C(Q) of the problem
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given by eqns (11) and (15). Further, since we have assumed that v € C*(Q) N C?*(Q) and that the
eqn.(32) is satisfied, we have that a = M/V?u € C?(Q) N C(Q) is well-defined and is strictly positive in
Q. Clearly, from eqn.(33), a is unique. From eqns (16), (17) and (33) we obtain the estimates (34)-(36),
where in the last inequality in (35) we have applied (16) for the function w which satisfies the problem (19).

Example 3.1. Let us take Q = {(z,y) | 2% + y? < 4} to be the circle of radius 2, f = 1, g = —1,
u(z,y) = —(2% + y?)/4 and we aim to retrieve a(z,y) = 2 — (2% + y?)/4. Solving the problem given
by eqns (11) and (15) we obtain M(z,y) = —2 + (22 + y?)/4 and solving the problem (19) we obtain
w(z,y) = 2+ (22 +y?)/4. Clearly, ||flloo = 1, 9llzo(a0) = 1, lalloo =2, A =1, supoV?u = —k = 1
and the estimate (35) gives 2 = ||al|co < [|w]|oo = 2, Whilst the estimate (36) gives 2 = ||aljco < 1+C = €2,
so this estimate is not so sharp.

At this stage, it is worth noting that the assumption (32) can be obtained directly by applying the
maximum principle, in the form of replacing the condition g < 0 by g < 0, to the function M.

Next we establish the continuous dependence of a on the data f and g.
Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied, and let a and @ be solutions of

L(a;u) = f in Q, M = g on 0Q and L(@;u) = f in Q, M =g on 05, respectively. Then the retrieval of
a 18 stable with respect to noise in the data f and g, and we have the estimates

|a(2) ~a(a) < —pw(e), =€ (37)

o~ Tloo < £ ufloo < X (39)

where a = %, a = VA_;_IU, M and M are the solutions of the problem (11) and (15) with the data f, g
and f, G, respectively, and _

€ = maz{|[[f — flloo, |9 = Gl ooy } (39)

Proof. The inequality (17) gives | M(z) |< —Aw(z) for all z € Q. Then repeating the same
arguments based on maximum principles we obtain

| M(z) — M(z) |< —ew(z), z € (40)
and hence the error estimates (37) and (38) follow immediately from the fact that « = <% and @ = VITZ'II .

Now suppose that L(b;v) = f, where b is the flexural rigidity coefficient produced by a perturbed
forward solution v = u and loading function f ~ f. On denoting z := L(b;v — u) + f — f and applying
Theorem 3.1 to the problem L(a — b;u) = z, we obtain the following stability result.

Theorem 3.3. Let the assumption (32) be satisfied. If L(a;u) = f and L(b;v) = f, z > 0 in Q and
(a —b)V?u |aq= 0 then
fvlls ;. (1+C)B

—bf|oo <

(41)
where
B = = flloo + 1V?8)lco | V*(v = w)floo + 2/ Vbllool| V2 (v = t)lloo + [Blleol| V(v — )]0 (42)

Remark 3.1. Theorem 3.3 shows that the retrieval of a is stable with respect to noise in the data u
and f. However, it suggests that a successful identification of a will be feasible only if the observed u is
sufficiently precise to permit an accurate approximation of the fourth derivative of u. However, it should
be noted from eqn.(28) that a varies as the second derivative of u in the one-dimensional case.

To see that this situation is anomalous, consider the following example in the two-dimensional unit circle,
namely:

Exmaple 3.2. Consider

a=2"+y°, u=—(®+y%)/16, f=-1 (43)
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b=1, v=—(z+y%/48, f=-1 (44)
Here [la = blleo = 1, [[V2(v = w)]leo = 1/4, [IV?(v = ¥)]leo = 1/2, [V (v = v)llc = 1, k = 1/4,
M = —(2? + y?)/4. Hence from eqn.(42) we obtain B = [[V4(v — u)|lc = 1. The bound (41) is
readily seen to be sharp for this example, and it is clear that ||a — bllcc is not bounded in terms of

192(0 = ).

The inequality (41) can be used to obtain an a posteriori estimate of the accuracy of b provided the
errors in V2v, V3, V4 and f are available. In any case, it characterises the dependence of ||a — b||« on
these errors. In practice it is usually most appropriate to view the approximate flexural rigidity coefficient
b as an intermediate quantity, and judge its accuracy in terms of the results it yields for the forward prob-
lem under conditions which are different from those which prevailed during identification. Accordingly,
we consider an approximation b = a, as in Theorem 3.3, and a ”subsequent” forward problem together
with its perturbed counterpart, namely, L(a, ¢) = L(b, ¢) subject to the boundary conditions (10) and
(11) corresponding to supported plates. The error in ¢ is thus solely due to that in b. Assuming b > 0
and combining Lemma 2.1 and Theorem 3.3 we obtain the following corollary.

Corollary 3.1. Let the assumption (32) be satisfied. If L(a;¢) = L(b; @) satisfy the same boundary
conditions (10) and (11) with the same h and g and z == L(b;¢ — ¢) > 0 in Q and (a — b)V?¢ |aq= 0,

then _
126~ Pl _ (C+1)B
IV28ll2 = kinfab

(45)

4. IDENTIFIABILITY OF A HARMONIC FLEXURAL RIGIDITY

In this section we consider a particular case in which the flexural rigidity coefficient a is a harmonic
function, i.e. V2a = 0. This class includes the important cases of constant and linear spacewise dependent
flexural rigidities of plates. In such a situation, eqn.(3) can be written as a hyperbolic equation for a,
namely

Lyi(a;u) :=2Va e V3u +aViu = f (46)

and the mathematical and numerical analyses of [20,21] for the steady-state diffusion equation Va e Vu+
aV?u = f can be applied. Here we mention only the main results.

Theorem 4.1. Suppose that V?a = 0 in Q and that Q can be divided into two subregions 1 and Qs
such that
|V3U,|Z ki1 >0 in Ql, V4u2k2>0 in Qs. (47)

Then for any f € L%®(Q), the problem Li(a;u) = f has at most one solution a € Agq = L(Q) N
C1(Q3) assuming prescribed values along the ”inflow” portion T' of the boundary 0 (essentially that
portion T' C OQ where the outward normal derivative of V?u is negative), and

2u

where

[VQu]:supQVZu—inng% q1 = supq ___ny__
H 2 VR

01 = mas {10 (79 . 5

1

Next we give a particularly advantageous set of test conditions for observing the forward solution. For
a given load function f and boundary conditions on 952, a solution u to the elliptic forward problem (3)
is observed. This (f,w)-pair is then used in solving the problem L;(a;u) = f for the unknown flexural
rigidity coefficient. We shall be concerned with the following ”test conditions” for the forward problem:
(i) f is positive and Holder continuous in Q.
(i) u =h =M =g =0 on 0Q (supported plates). The condition M = 0 on JQ also violates the
previously imposed condition (32).
(iil) @ € C?(Q) N C(Q) is positive and V?a = 0.
(iv) Q lies between two parallel planes a distance | apart and satisfles the ”exterior sphere condition”,
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i.e. for any P € 05, there exists a ball Bg centered at Q ¢ Q such that Bo N Q = P.

Theorem 4.2. If u arises following the test conditions (i)-(iv), the problem Ly (b;u) = f has at most
one harmonic solution b € L™®(Q) for any f € L™(Q). Furthermore,

bl < H(a, 2, £l flloo (50)
where D P B
Amin .
H(CL,Q, f) = fmin 7'nf0€(0,1) { (1_—9 + 9—2> eTp <§)} (51)
0 < amin = minga DM% 0 < fnin = mingf
min T Q b - amzn ) maan T Q 3
Va2 || flleo(e! — 1
p= Il ) 52

It can also be shown that the stability bound (20) is potentially sharp in the case a = constant. In
this case £ = 0, so H(a,Q, f) = 6/ fmin and (50) becomes ||b]loo/a < || f|l/ frmin- Note that in the case
when the flexural rigidity is harmonic and constant then L(a;u) = f reduces to aV4u = £, and also the
harmonic function b satisfies 2Vb - V3u + bV*u = f. If we choose b so that Vb is orthogonal to V3, then
we obtain bV4u = f. From this we infer that b(P)/a = f(P)/f(P). Thus ||bllec/a < || fll/ frmin will be
sharp if f is largest at the same point where f is smallest.

Finally, the stability bound (50) is potentially useful in assessing the inaccuracy in a resulting from
measurement error in f and u, as we now indicate. Indeed, applying theorem 4.2 to the identity
L{(@—a);u) = —L(a;u —u) + (f — f) we obtain the following corollary.

_ Corollary 4.1 If @ arises as the solution of the perturbed problem Ly(@;u) = f where & ~ w and
f = f, then under the test conditions (i)-(iv) we have

13— alloo < H(a, 2, fe (53)

where

€= [|f = Flloo +2[Vallool| V(T — 1) oo + @[ V(@ — w)lloo (54)

This can be used to obtain an a posteriori estimate of the accuracy of @ provided the errors in V3w, V4
and f are quantifiable.

Finally, if we consider the direct problems L(a;w) = L(a, W) subject to the boundary conditions given in
Lemma 2.1 and using corollary 4.1 we obtain the continuous dependence of the direct problem as given
by the estimate
1Y@ - w2 _ Ha, 2 0)e
[Vwllz — infaz

(55)
provided that @ > 0.

5. CONCLUSIONS AND FUTURE WORK
In this paper some mathematical aspects of the inverse problem of identifying the spatially varying flexural
rigidity of a plate using an observed deflection solution of a dynamic linear Kirchhoff plate model have
been addressed. In particular, it has been shown that the flexural rigidity coefficient can be identified
if a non-negative load and natural boundary conditions expressing negative functions are prescribed on
the plate. In addition, if the deflection can be measured such that its Laplacian is negative then stability
estimates for the flexural rigidity coefficient have been established. This assumption can be removed in
the situation when the flexural rigidity is a harmonic function, in which case the uniqueness and stability
of an associated problem have been established.

Nevertheless, in the infinite-dimensional setting of this study the uniqueness of the coefficient present
in the partial differential eqn.(3) followed from regularity properties of involved functions, similarly as
obtained in [5] in a result concerning identifiability of the inverse problem of groundwater hydrology.
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However, these properties disappear in the discrete case, [18]. Therefore, in order to take into account
the case of pointwise measurements of u, further work will be concerned with the numerical identification
of the spatially varying flexural rigidity coefficient. This task can be accomplished by recasting eqns
(12) and (15) as an ill-posed Fredholm integral equation of the first kind and employing Green’s formula
combined with Tikhonov’s regularization method for minimizing with repect to o = a™! the linear
functional

ou

[{[ revmeeem, « e - [ [ren 2 i) as | .
—l—)\/Qozz(a:)de (56)

subject to the constraint « > 0, where A > 0 is a regularization parameter, 1" is the fundamental solution
for the Laplace equation and M (z) satisfies the integral equation

70 G ) - M) e 5, - [ ST, ze@ (67

Yy

WM @) = [

on

where n(z) is a coefficient function which is equal to 1 if z € Q and 0.5 if z € 9Q (smooth).

This approach resembles an extension to two-dimensions of the one-dimensional work on beams, [2].
Alternatively, if the flexural rigidity is harmonic, as in section 4, one can extend the numerical method
of [21] related to hyperbolic problems.
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